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Some Remarks on Rate-Dependent Plasticity

by

P. M. Naghdi
Department of Mechanical Engineering
University of California, Berkeley

Abstract. First, some motivation is provided for the development of a

relatively simple rate-dependent theory of plasticity based on an elastic-

viscoplastic constitutive model. This idealization includes unloading

and allows for suitable definition of plastic strain. Next, within the

scope of a purely mechanical theory, a special constitutive response is

used to discuss the nature of constitutive restrictions for a finitely

deforming rate-dependent material, which are obtained from an appropriate

work inequality. With the help of these restrictions, certain features of

the theory are elaborated upon with particular reference to normality and

convexity.,
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! 1. I

I. Introduction

This paper elaborates on certain aspects of rate-dependent plasticity in

the presence of finite deformation, which include as a special case the cor-

responding results for a rate-independent theory. The discussion is carried

out on this occasion entirely within the scope of the purely mechanical

theory, leaving aside relevant thermodynamical aspects of the subject.

By way of background, it should be recalled here that in the usual

theory of rate-independent plasticity, the rate of plastic strain and the

rate of work-hardening are expressed as linear functions of the rate of

strain or the rate of stress. The coefficients of response functions in

these expressions, as well as the loading functions and other constitutive

response functions, are all independent of the rate of strain, the rate of

stress and time derivatives of other kinematical ingredients. Indeed, by the

very nature of the idealization of rate-independent theory, the time rate of

quantities are independent of the time scale used to compute the rate of change

so that, for example, the plastic strain rate is homogeneous of degree one in

the rate of strain (or the rate of stress). In fact, in the rate-independent

theory, the time variable may be interpreted as any parameter which is

monotonically increasing with time during deformation. By contrast, a rate-

dependent theory of plasticity is intended to characterize "rate-dependent"

behavior by including rate quantities in the constitutive response functions

and possibly also in the yield or loading functions.

For definiteness, consider the response of a rate-dependent material

(say that of a typical ductile metal) in a one-dimensional test -- either in

tension or compression -- in which the strain may be moderately large or even

large. Let e and s stand, respectively, for the component e11 of the

Lagrangian strain tensor and the component sll of the symmetric Piola-

Kirchhoff stress tensor. Figure 1 shows the familiar plot of stress versus
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strain of an elastic-viscoplastic material at various strain rates el'e2''"'

where a superposed dot designates differentiation with respect to time t.

Also shown in Fig. 1 is the corresponding rate-independent idealization represented

by the curve OAB, where in the linear range OA the material is elastic. The

point A representing the elastic limit is assumed to be coincident with the

initial yield.

Rate-dependent behavior of materials encompasses an important and dif-

ficult chapter in the theory of inelastic behavior of materials. Consider

the enormous difficulties one encounters in attempting to include all relevant

features in the development of rate-independent theory of plasticity, where

all time effects are ignored. Given this, the further difficulties of rate-

dependent theory is evident. The terms "rate-dependent" or "rate-sensitive"

behavior of materials, frequently used in the literature, refer loosely to

various developments intended to reflect a variety of material behavior. For

example, elastic-viscoplastic or viscoelastic-plastfc theories, or still other

rate-dependent theories of material behavior, although difficult to classify,

include some dependence on the rate of strain. One particular category which

has attracted considerable attention from time to time is one in which the

theory attempts to describe material behavior during loading with the

initial response prior to yield regarded as elastic, but usually such theories

do not deal with the problem of unloading. In such rate-dependent theories

an important feature which seems to have been dealt with from various points

of view is the prediction of an increase in the linear range of the stress-

strain response with increasing strain rate which, in turn, leads to the

prediction of higher initial yield stress at higher strain rates. The

interpretations of experimental results in this area seem inconclusive and

appear to lack any discussion about the nature of unloading and a suitable

Although the stress-strain responses shown in Fig. 1 are plotted in the s-e
plane, the corresponding plots of engineering stress versus engineering strain
or true stress versus true strain exhibit similar features.
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definition for plastic strain in rate-dependent materials. For general back-

ground information on the subject reference may be made to an article by

Perzyna [1] and to a recent experimental paper by Klepaczko and Duffy [2],

where a large number of additional references are cited.

An important aspect of the development of theories of the type under

discussion involves obtaining realistic material response -- in accordance

with experimental observations -- by imposing physically plausible restric-

tions on the constitutive equations. For example, such restrictions may be

effected by some appropriate statement (or statements) of the Second Law of

Thermodynamics, or by an appeal to certain stability criteria such as Hadamard's

stability condition. In this connection, a fruitful idea involving the notion

of nonnegative work in a closed stress cycle was advanced by Drucker [3] in 1951;

and, with the limitation to small deformation, it was expressed in

the context of the purely mechanical, rate-independent theory of elastic-

plastic materials. This idea, again in the presence of small deformation,

was subsequently extended by Drucker [4] to rate-dependent theory and was

referred to by him as "stability postulate." A related postulate was

introduced in 1961 by Il'iushin [5] in the context of the linearized theory

of plasticity with small strain. The latter again involves a work inequality,

which is defined over a closed strain cycle; and, as noted in

[5], is less restrictive than Drucker's postulate [3]. Mention should also

be made of related papers by Drucker [6,7] and by Palmer et al. [8], which

contain some discussion pertaining to the normality of plastic strain rate

and convexity of the loading surfaces in the presence of small deformation.

More recently, in the context of finite deformation and in a strain

space setting, Naghdi and Trapp [9] introduced a physically plausible work

assumption and used this primitive assumption to derive a work inequality.
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The work inequality was then used to obtain constitutive restrictions in the

rate-independent theory of elastic-plastic materials [9,10]. The work

inequality derived in [9], upon specialization to small deformation, may be

compared with the postulates of ll'iushin and Drucker (see [9, section 3]).

Moreover, it is clear from the derivation of the work inequality in [9] that

its validity is not limited to rate-independent plasticity but, in fact, is

valid for a fairly large class of materials including those which may be

rate-dependent.

In the present paper, after some preliminary background information

pertaining to both "rate-independent and "rate-dependent" inelastic behavior

of materials, the main features of a model for a class of "rate-dependent"

materials introduced previously in [11] are recalled in section 2. The constitu-

tive response of this relatively simple model, which characterizes an elastic-

viscoplastic behavior, is capable of describing material response during both

loading and unloading and accommodates a suitable definition for plastic strain.

Next, using a special constitutive equation for the stress response (see Eqs.

(2.17a,b))and the work inequality derived in [9], constitutive restrictions are

derived in section 3. A part of these results may be regarded as a special

case of those obtained in [11] with the use of fairly general constitutive

equations. Most of the mathematical details of the developments in section 3

leading to the inequality (3.6) are placed in Appendix A at the end of the

paper. Further, j,; discussed in section 4, the restrictions derived in section 3

bear on normality of certain expressions involving plastic strain rate and on

convexity of loading surfaces in strain space. Also included in section 4 is

a geometrical interpretation of the one-dimensional version of the main work

inequality over a strain cycle utilized in section 3.
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2. Preliminaries. General background.

Throughout the paper, we use both the standard direct and the Cartesian

tensor notations. Often, however, we write the various expressions in component

forms and display vector and tensor fields in terms of their rectangular

Cartesian components. All subscripts take the values 1,2,3,and the usual

summation convention is employed over repeated subscripts.

Let the motion of a body be referred to a fixed system of rectangular

Cartesian axes and let the position of a typical particle in the present con-

figuration at time t be designated by x with rectangular Cartesian components

xi , where xi =i(XA't ) and XA is a reference position of the particle.

Further, let E with rectangular Cartesian components eKL by the symmetric

Lagrangian strain defined by

eKL = (FFi-6 , - xi (2.1)

where FiK are the components of the deformation gradient relative to the

reference position and 6KL is the Kronecker symbol. We also recall the

relationship between the nonsymmetric Piola-Kirchhoff stress tensor P and

the symmetric Piola-Kirchhoff stress tensor S, namely

PiK = FiLsLK ' SLK = SKL ' (2.2)

where PiK and sKL are, respectively, the rectangular Cartesian components of

P and S.

For purposes of comparisons with later developments, we now summarize

the main ingredients of a rate-independent theory of a finitely deforming

elastic-plastic solid and base our results on the purely mechanical aspects

of the subject contained in the papers of Green and Naghdi [12,13] and

Naghdi and Trapp [14]. Thus, in addition to the strain tensor eKL, we
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assume the existence of a symmetric second order tensor-valued function Ep ,

with rectangular Cartesian components ePL(XA,t), called the plastic strain

at XA and t, and a scalar-valued function K =<(XAst) called a measure of

work-hardening. It is assumed that the stress S is given by the constitutive

equation

s KL(U) , U (eMN,eNK) (2.3)SKL LM'M

and that for fixed values of EP and K, (2.3)l possesses an inverse of the form

eKL = eKL(V) , VU (MN,eMN,K) (2.4)

We use a strain space formulation of plasticity and, as in the paper of Casey

and Naghdi [16], also regard the loading criteria of the strain space formula-

tion as primary. The associated loading conditions in stress space can then

be derived with the use of constitutive equations for stress. Thus, we admit

the existence of a continuously differentiable scalar-valued yield (or

loading) function g(u) such that, for fixed values of EP and K, the equation

g(u) = 0 (2.5)

represents a closed orientable hypersurface 3E of dimension five enclosing

an open region E of strain space. The function g is chosen so that g(U) <0

for all points in the region E. The hypersurface )E is called the

yield (or loading) surface in strain space. The constitutive equations for

EP and K are [14]:

Advantagesof a strain space formulation of plasticity have been emphasized
in [14,15].

I
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0 if g < 0 , (a)

0 if g = 0 and g < 0 , (b)eP =^ (2.6)
0 if g = 0 and g = 0 , (c)

APKLg if g = 0 and g > 0 (d)

and

= CKL eKL (2.7)

where CKL is a symmetric tensor-valued function of the variables U, a super-

posed dot denotes material time differentiation,

^ g e (2.8)g De Me MN

and where A and pKL are, respectively, a scalar-valued and a symmetric tensor-

valued function of U. The conditions involving g and g in (2.6) are the

loading criteria of the strain space formulation. Using conventional

terminology, these four conditions in the order listed correspond to (a) an

elastic state (or point in strain space); (b) unloading from an elastic-plastic

state, i.e., a point in strain space for which g=0; (c) neutral loading from

an elastic-plastic state; and (d) loading from an elastic-plastic state. We

assume that the coefficient of g in (2.6d) is nonzero on the yield surface

and, without loss in generality, we then set P KL:M X >0. The so-called

"consistency" condition, namely g =0, yields the relationship

1 +Xp( + C 0 (2.9)
1+XKL 3p K KKL

at all points on the yield surface through which loading can occur.

For a given loading function g(U), with the aid of (2.4)1, we can obtain

a corresponding function f(V) by means of the formula
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g(U) g(e (V)epLK) f(V) (2.10)

Because of the assumed smoothness of (2.4)1, for fixed values fo Ep and

the equation

f(V) = 0 (2.11)

represents a hypersurface '3S in stress space having the same geometrical

properties as the hypersurface E in strain space. The region enclosed by

3S is denoted by S. It is clear from (2.10) that a point in strain space

belongs to the region E (i.e., g(U) < 0) if and only if the corresponding

point in stress space satisfies f(V) < 0 and hence belongs to S. With the

of the constitutive equation (2.4)1, loading conditions for stress space ca

now be derived from the loading criteria of strain space in (2.6) as discu i

by Casey and Naghdi [16]. We do not record these conditions as they are nk

needed for the particular development of the present paper.

We are concerned in the present paper with a discussion of certain

features of a relatively simple rate-dependent theory of plasticity. In order

to motivate the subsequent developments, we begin by examining briefly the

familiar idealized one-dimensional response of test results, especially since

many concepts concerning mechanical behavior of materials are extensions of

observations made in simple tension or simple compression or simple shear.

Both Figs. 1 and 2 depict certain idealized response of materials. In both

figures the curve OAB represents the so-called "static" response corresponding

to an idealized rate-independent model. With reference to the curve OAB, we

note that from the point 0 to the proportional limit A the material is

linearly elastic and, since the deformation in this range is reversible,

unloading takes place along AO. For loading above A (regarded to be

coincident with the yield point), the deformation is irreversible and the



rate-independent material strain hardens along AQB. Unloading from a point

such as Q is assumed to take place elastically along QR, which is generally

taken to be parallel to OA. There are other features associated with the

rate-independent response such as the lower compressive yield limit, but

these need not be discussed here.

It is reasonable to assume that for sufficiently low strain rate, i.e.,

as the strain rate e tends to zero (using the notation of section 1), the

rate-dependent response of the material approaches that of the rate-

independent model represented by OAB in Fig. 1. At higher rates of strain,

the rate-dependent response of the material would be represented by 0AB1

when the strain rate is e1 and by 0AB 2 when the strain rate is e2 (> e1 )

and so on. Again, with reference to Fig. 1, consider a point P on the

response curve OAPB 2 and through P draw a dashed line parallel to the

s-axis intersecting the curve OAB at Q. Let e and ep denote, respectively,

the total strain and the plastic strain at Q on the rate-independent response

curve OAB. Then, as indicated in Fig. 1, the segment OR r,presents the

plastic strain at Q. In general, deceleration from a point P on the curve

OAB 2 would proceed along the dashed curves such as PQl IPQ2 to the right of PQ

and such processes would be represented by dashed curves which end on the curve

CAB representing the rate-independent response. In fact, as the process of

deceleration takes place at a faster rate, in the limit one would approach

the dashed line PQ. We may refer to PQ as a rai path using an earlier

terminology introduced in [17]. Clearly, every point along the line PQ

experiences the same total strain e and the same amount of plastic strain

e and this notion of rapid path enables one to define plastic strain for

rate-dependent materials. Again, with reference to Fig. 1, reloading from a

point along RQ at a given rate of strain (say for example at the rate e2)

would proceed along RQ until one reaches Q and then, consistent with the
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idealization indicated, there has to be an allowance for jump in the value of

the stress in order to reach the point P. Thereafter, as indicated in Fig. 1,

further plastic deformation at the rate e2 will continue along PB2.

Experimental results of a fairly large class of rate-dependent materials often

exhibit the phenomenon that at higher rates of strain the value of yield stress,

sometimes referred to as "dynamic yield" stress, occurs at a value that is higher than

the corresponding "static yield" of the rate-independent theory. Such observations

may be accommodated easily by a model whose one-dimensional response is shown

in Fig. 2, where at higher rate of strain the value of the yield stress jumps

to a higher value along the vertical of the line AA1 A2. Remarks concerning

unloading from a point P at a higher rate of strain, say e2, discussed with

reference to Fig. I are also applicable to unloading from points such as P

in Fig. 2. Again, every point along PQ experiences the same amount of total

strain and the same amount of plastic strain.

The response in one dimension of the "rate-dependent" material behavior

of the type discussed in the preceding two paragraphs is once more depicted

in Fig. 3, where again the curve AOB represents the "rate-independent"

idealization. This model displays an increase in the linear range of the

stress-strain response and, corresponding to different constant strain rates

el,e 2 , admits the so-called "dynamic yield stress" at points such as A1,A2.

It is important to observe that in contrast to the model associated with

Fig. 1, the model associated with Fig. 3 also implies accumulation of plastic

strain beyond the "static yield" stress above point A. However, this does

not appear to have been reported experimentally and may be even difficult

to observe. An unloading line from a point P parallel to OA leads to a

definition of plastic strain represented by the segment OR2, which is

unacceptable: Compare OR2 to the segment OR of Fig. I, which for easy

IN!
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comparison is also reproduced in Fig. 3. A model corresponding to the

material response indicated in Fig. 3 has been used during loading to

predict higher "dynamic yield" stresses at higher strain rates by different

procedures. In particular, this feature of the "rate-dependent" behavior

has been discussed by Malvern [18] and by Wil'-ins and Guinan [19] using a

rate-independent yield function. More recently, Rubin [20] has proposed a

different approach for predicting "dynamic yield" stress such as Al,A2 in

Fig. 3 with the use of a rate-dependent yield function along with a rate-

independent constitutive equation for stress.

We now discuss constitutive equations for an elastic-viscoplastic

material, which reflect properties for one-dimensional response discussed

with reference to Fig. 1. Again, we adopt the strain space formulation of

plasticity as primary, and admit the existence of a yield or loading function

of the form (2.5). Keeping in mind the loading criteria of the strain space

and the associated terminology in (2.6), we introduce constitutive equations

for plastic strain and rate of work-hardening by the assumptions

0 O, during unloading or neutral loadinq , (a)
p= 1(2.12)

KlMK~4eL , during loading (b)

and an expression of the form (2.7) which, in view of (2.12)2 , may also be

written as

< CKLeKL (2.13)

In (2.12) and (2.13), M KLM and CKL are, respectively, the rectangular

Cartesian components of a fourth order tensor and symmetric second order

tensor functions M and of the variables* (2.3)2. As in the development

The arguments of the response functions M and C could include also the strain
rate eKL but the forms of the response coefficient functions in (2.12)2 and
(2.13) suffice for our present discussion.

_________
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of the rate-independent theory (see Green and Naghdi [12]), it can be shown

that the response coefficient in (2.13), can be expressed in the form

M IKLFI : 'KL (2.14)

or that equivalently e L is again given by (2.6d) during loading. Also, the

consistency condition is again of the same form as (2.9).

Next, it is convenient to introduce the constitutive equation for the

stress response in the form

2KL 1 KL2SKLMN e  , during loading when g =0, g >0 , (a)

(2.15)

SKL 1 SKL , during unloading and neutral loading when g =0, g 0 . (b)

In (2.15), the second order tensor 1 SKL and the fourth order tensor 2SKLMN

satisfy obvious symmetries and each is regarded to depend on the variables

U, i.e.,

sI = sKL(u) 2SKLMN = 2sKLMN(I) (2.16)

The stress response characterized by (2.15) and (2.16) is linear in the

strain rate through the constitutive equation for eP during loading.PIN

During unloading and neutral loading, the stress response has the same

form as that of the rate-independent theory; and hence, without loss in

generality, we may identify ISKL in (2.16)1 with SKL of (2.3)1. Also the

second part of the stress response durino loading, namely 2sKLMNeMNPI

represents the jump in sKL from a point such as Q (see Fig. 1) on the

loading function and will assume different values depending on the rate of

strain e MN*

Again the strain rate eKL could be included in the argument of 2SKLMN but
this is unnecessary in the present discussion.
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In the next section we restrict attention to a special form of the

stress response (2.15) given by

SKL L KLP-eMN+LKLM MN when g = 0, g > 0 (a)

(2.17)

= ILKLf.(elNe p ) , when g 0 0, g 4 0 , (b)SKL  IKM NM

where ILKLMN and 2LKLMN are the rectangular Cartesian components of con-

stant fourth order tensors and 2L, respectively.

L _. .._ _-..
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3. Restrictions on constitutive equations for plastic strain rate and the
stress response (2.17)

We first recall in this section the primitive work assumption introduced

by Naghdi and Trapp [9] leading to the work inequality (3.2) and then discuss

the nature of the restrictions which can be placed on the constitutive

equations for the plastic strain rate and the special response (2.17).

Consider a closed cycle of a spatially homogeneous motion in the closed

time interval [tl,t 2], (tI <t2). The cycle is said to be smooth if the time

derivatives of displacement, strain and associated kinematical quantities are

continuous in [tl ,t2] and assume the same values for each material point at

times tI and t2 . We designate such a smooth spatially homogeneous closed

cycle of deformation by C(t l ,t 2 ) and recall from [9] the following work

assumption: The external work done on the body by surface tractions and by

body forces in any smooth spatially homogeneous closed cycle is nonnegative,

i.e,,

t[ i PiKNKvi dA + o o°bividV]dt> 0' (3.1)

for all cycles C(tl,t 2). In (3.1), Ro is the region of space occupied by the

body in its reference configuration, 3Ro is the closed boundary surface of

Ro' 10 is the mass density in the reference configuration, vi are the

components of the velocity, bi are the components of the body force per unit

mass, NK are the components of the outward unit normal to 3Ro , PiKNK represent

the components of the stress vector measured per unit area in the reference

configuration, and dA and dV refer to elements of area and volume in the

reference configuration.

Recall that a homogeneous motion is one whose deformation gradient is
independent of the material coordinates so that, in a spatially homogeneous
motion, the strain tensor E is a function of time only. For a closed
spatially homogeneous cycl in the closed time interval [tl,t 2], the dis-
placement x and the strain E assume the same values at times tI and t2.



15.

It is shown in [9] 
that for any cycle 

C(tl ,t2) the assumption 
(3.1)

leads to**

St2 SKLeKLdt > 0 (3.2)

1

As already noted in section 1, the above work inequality is valid for rate-

dependent materials even though originally it was used in [9] for rate-

independent elastic-plastic solids.

Let E0 with rectangular Cartesian components e 0 refer to an existingeKL

state of strain inside a loading surface in the six-dimensional strain space

such that g(eK0 ePLK) <0 at time t1. Let Tdesignate the first occurrence

of plastic strain at which time g(eL eP K)=0, where eL denotes the value

of the strain at a point on the loading surface. We note that it is always

possible to find a path inside g(EY ,EP,K) =0 from E° to E such that the

strain rate is any desired value at EY . Consider now a closed spatially

homogeneous strain cycle starting and ending at E° . From E to E the loading

takes place elastically during the interval t1 4 t < t and continues in the

viscoplastic range in the interval f < t < T+ - at a constant strain rate
n

M (= E). At the end of this interval (corresponding to a point such as P in

Fig. 1) the strain has a value EY + iM. This is followed by a constantn ~

deceleration process to a state of zero strain rate (corresponding to points

such as Ql'0 2 on the rate-independent response curve in Fig. 1). Such decelera-

tion processes are assumed to occur at a decreasing rate of strain specified

by the constant rate -kM (= E) during the time interval -f+ t <-+1+whilen t h

An inequality similar in form to (3.2), but with limitation to infinitesimal
deformation, is the starting point of Il'iushin's discussion in [5] and is
referred to by him as the "postulate of plasticity."

gRecall this if the path in strain space is parametrized with respect to
time t, then the strain rate E is directed along the tangent to the path.
If t =const., then the path ii a straight line.
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loading continues. At the end of this time interval, the strain rate vanishes

and the strain has the value E +(I+I)M. A sequence of such decelerated
n 2Z.

processes (corresponding to paths PQI,PQ2,..., in Fig. l),in the limit as

Z -- ,results in a rapid path (corresponding to PQ in Fig. 1) to a state of zero

strain rate with the value of strain being E Y + - M (corresponding to the value- n -

of strain at Q in Fig. 1). Thereafter, unloading takes place during the

time interval f+- <t<t with the strain returning to E(t) =E0 . The
n Z t~ 2

strain cycle just described may be summarized as follows:

E t < tI  , (a)

E° 0 E EE'M at EY  t I  t < t (b)

EY + M(t-t) t < t < I (c)
E(t) -1-1 1 2 - 1d1 (3.3)

EY Eo 0 E =M at E Y  + +-l<+It < t 2  (e)

<l 
2

t 2  (f)

The one-dimensional version of the above strain cycle is indicated in Fig. 4

by the cycle CIQPP/Q'C6 : The point C1 at the strain e
0 in Fig. 4 corresponds

to (3.3a); the elastic loading path C1Q corresponds to (3.3b); after the jump

in stress at Q, the path PP' at a constant strain rate M corresponds to (3.3c);

the path P' , which in the limit of rapid deceleration becomes P'Q , cor-

responds to (3.3d); the elastic unloading path Q'C6 corresponds to (3.3e);

and finally the point C6 at the strain e0 corresponds to (3.3f).

With the use of the special stress response (2.17), application of the

work inequality (3.2) to the strain cycle (3.3) leads to

t KL MN Ne KLdt 2LKLeMN eKLdt ; 0 (3.4)

Note that if E + (I + 1)f is close to EY , then the strain E 0 will remain

inside the yield surface since the loading function is continuous in E.
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where use has been made of the fact that EP is nonzero only during the time

interval [t, +(-+ )]. The strain cycle (3.3) begins and ends at the

constant strain E0 . By writing E as (E-E ) and the use of the fact that

E(t) =E° at t1 and t2, the first integral on the left-hand side of the above

inequality can be integrated by parts and (3.4) reduces tol I - 1 1
I +( - + - ) I  eK~~ t° "p (-+ - )  •"

rdt +-L e eP dtO . (3.5)
1 LKLM(eKL - +f 2 KLMN KL MN

After estimating the various integrals on the left-hand side of (3.5) by

using the Taylor series expansion of the integrals about t =f and t ft andn

allowing in the limit Z -- , i.e., the "slowing down period," to take place

very fast and approach a rapid path (corresponding to P'Q' in Fig. 4), the

work inequality (3.5) yields (for details see Appendix A)

(EY -E ° ) "L M Y M + -2 L M 0 , (3.6)

which in component form reads

(ey -e 0NSR )lM L Wm > 0 ,(3.6a)KL KL) LKLMN'NRsMRs + MKL 2LKLMN MNRS RS

where for the inner product of any two tensors A,B we have used the notation

A • B = trace ATB, AY is the value at EY of the fourth order tensor M whose

components M RS are given by (2.14) and MRS are the components of the strain

rate M which occurs in the strain cycle (3.3). The inequality (3.6) or (3.6a)

is a necessary condition for the validity of (3.5) and hence also (3.2).

Now let E° approach EY while maintaining the strain rate fixed at t.

It then follows from (3.6a) that

2LKLMNeKLe MN (3.7)

Since (3.6) must hold for all M and the coefficients of M in (3.6) are
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independent of rates, we may also deduce that

1 LKLMN(eYL -eKL )e 0 (3.8)

The two inequalities (3.7) and (3.8) are both necessary and sufficient

conditions for the validity of the coupled inequality (3.6). Further, by a

special but arbitrary choice of E° such that the path E0 to EY is traversed

at a constant strain rate, (3.8) can be reduced to

ILKLMNeKLeMN ) 0 (3.9)

The inequalities (3.7)-(3.9) are restrictions on the constitutive equa-

tions of a finitely deformed elastic-viscoplastic material with

the special stress response (2.17). These restrictions hold in all motions,

even though they have been deduced from consideration of homogeneous motions

alone. We note that the results (3.7)-(3.9) include as a special case those

relevant to the rate-independent theory of plasticity. In fact, (3.8) and

(3.9) are identical to those derived previously by Naghdi and Trapp [10,

Eqs. (30) and (31)].
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4. Further implications of the inequalities obtained in Section 3

We discuss now certain features of the restrictions (3.7)-(3.9). As

shown in [11], it follows from (3.9) that

XL 3e ' > 0) (4.1)ILKLMNPMN = Yl 3eKL (l > O

where yl =yl(u) is a positive scalar independent of rates. Similarly, from

(3.7), it can be deduced that

X 2LKLMNOTMJ = Y2 -g  (Y2 > 0) , (4.2)9eKL

where Y2 =Y2
(U) is a positive scalar independent of rates. The left-hand

sides of both (4.1) and (4.2) involve rate of plastic strain (see Eq. (2.6a)).

Moreover, these quantities (on the left-hand sides of (4.1) and (4.2)) are

directed along the normal to the yield (or loading) surface in strain space.

Next, by (3.8) and the fact that yl >0, we have

(eYL -eKL) -- > 0 (4.3)K L KL e K L

and this implies convexity of the yield (or loading) surface in strain space.

We now examine the implication of the restrictions (4.1) and (4.2),

which are obtained from (3.7) and (3.9), on the constitutive equation (2.17a).

Since Yl and Y2 are nonzero, by (4.1) and (4.2) we have

Y1 LKLMN PMN 2 2LKLMNPrtI (4.4)

Now a part of the stress response in (2.17a) which involves 2L , with the help

of (2.12b), (2.14) and (4.4), can be written as

2LKLMNe MN 2LKL pNX g
Y2

- 1- ILKLMNACMNg

= 1L KLMNeAN , (4.5)

Kf
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where we have set

Y : -(4.6)

Since y1 and Y2 may be determined from (4.1) and (4.2), the coefficient

defined by (4.6) can be regarded as known and of course may be taken to be a

constant. The conclusion (4.5)3 enables us to rewrite the stress response

(2.17a) in the form

SKL : ILKLft[(eMN -ep ) + , k K g] (4.7)

and this has the advantage of containing only the constitutive coefficient 1L.

The inequality (3.5) when appropriately specialized to the strain cycle

corresponding to CIQPP' Q C6 in Fig. 4 can be expressed as

t2 y o dt + -(e e L eP dt + .2 L e(

I(KL-KL1l KLMN M' KL_ KL 1L KLMN M( KLMM~ Q~ dtO,(48
I t 1 t1

and in one-dimension (using the notations of sections 1 and 2) has the form

C(e) (ey -eO) L dep + fC(e) (e -eY )1L de + IC( 2L eP)de ;  . (4.9)

In (4.9), the relevant material coefficients for convenience have been replaced

by the constants IL and 2L, the quantity (2L e
p) in the integrand of the third

integral represents the jump in stress from Q to P and C(e) refers to a closed

strain cycle such as C1QPP'O'C 6 in Fig. 4. The shaded areas enclosed

by C1QPP'C 6 consist of (i) the area of the parallelogram C6CIQD, (ii) the area

of the triangle QQ'D and (iii) the area enclosed by PP'QQ1. It is easily seen

that these areas represent the three integrals (from left to right) on the

left-hand side of (4.9).
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Appendix A

The purpose of this appendix is to provide some of the mathematical

details used in obtaining the estimates for the integrals in the work

inequality (3.5). Most of the calculations are similar to corresponding

developments carried out in £11] with the use of more general stress

constitutive equations, but there are also some dcfferences in the results

obtained here. Previously in [ll], the closed strain cycle in E was so

0 Yconstructed that the path from E to EY, as well as the reverse path from

E to E°, are both traversed at an arbitrary but the same constant strain

rate. This stipulation was necessary in [11] in order to effect explicit

estimates for certain integrals. In the present paper, the path from

E° to EY and the reverse path are not necessarily traversed at constant

strain rates. Nevertheless, explicit estimates for the integrals over these

paths are possible because the response coefficient l L in the special con-

stitutive equation (2.17) is a constant tensor.

Let G(s) defined by

(s

G(s) = h(t)dt (Al)

s0

be continuous and at least twice differentiable in the interval s 0 t < s

and, for later convenience, put

h(t) = f(t)g(t) (A2)

Then, the Taylor series expansion of (Al) about t=s0 is
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G(s) (s-s o)f(s o)g(So) + 2 (S-So)2[f (So)g(So) +f(S o)g'(so)]

+ 3(s-so) [f"(so)g(so) +2f '(s o)g (so ) + f 1(s o)g"(So)]

O((s-s 0) 4 (A3)

where 0 is the usual order symbol and prime denotes derivative with respect

to t.

In order to indicate the manner in which the integrals in (3.5) can be

estimated about t, consider first the integral

11 +n(E-Eo) L EP dt (M)

where the integrand of (A4) also occurs in the first integral in (3.5) and

the notation for the inner product of any two tensors is defined following

(3.6a). After substituting the relevant value of E from (3.3) and applying

the Taylor expansion (A3) of the integral (Al) to (A4) with

f(t) =[EY - E0 +M(t-T)] and g(t) = L Ep , (A4) becomes

I I n[EY -E +M(t- )] IL EP dt

S Y 2n 2 - PY+[2n2 (EYEO) + -lnM. 2L
I Y o Y 1

: '(E -E°) l L M + 1 [ k (A5). ..~ . 2n2  '1 1 M+(E-E °) * L N M]+O(+3),(5
2n n

where in writing (A5)3 use is made of the fourth order tensor M defined

following (2.12)2, the superscript Y denotes the value of a function on

the yield surface at t t and where the fourth order tensor N stands for

the abbreviation

'M M M
N = N(U,M) : - • M + D C -M M (M)

D E 3EP 3K M .(6

Similarly, consider the integral
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- +1

12 :T n E "2 L E* dt (A7)

whose integrand also occurs in the second integral in (3.5). Substituting

for the strain rate from (3.3c) and applying the Taylor expansion (A3) of

the integral (Al) to (A7), we obtain

12 = i M-L IAY M + n L N M] + 0(3) (A8)

Now by a procedure similar to thdt discussed above, we may obtain an

estimate for the two integrals in (3.5). Thus, the Taylor expansion of the

first integral in (3.5) about t+. yields
n

- I
13 + n  (E-E° ) lL EP dt

n

2 (EY EO) .1L(1)
n

+ (j -+ M L( )t M
+ nZ 8z(3 +  I

n
_3 (EY Eo ) . L(N) M
8 z 2 ~ ~ I + I 1

n

+ , 9(A9)
Z2

When the right-hand side of (A9)2 is further expanded about t, we obtain

I 1 (EYE E L M ,,13 2zY" ~ I - nM l Y

+ (EY-EO) IL NM

- 3 (EY-E° ) 1L M
82 M • _

82 .-
+ 0(n_ __ Z

n n2 23

(AlO)
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The estimate for the second integral on the left-hand side of (3.5) can be

effected similarly and leads to

T ~+ l1 
1 4 n E2 L dt+4

n

- 1 M. L M
39. - 2 ~ -

S +n 1 )M .2 L NY M

+ 1(! 1 1+ n 2 2_ z_3)
n9 n9.£2'3(A)

Substituting the estimates (A5), (A8), (AlO) and (All) into (3.5) we finally

obtain

(1 + -L) (EY-E ° )  M Y M
n 2Z ~ 1.

+ (-I -)(EY E°  L NY M
2n2  8z2 - - -

I

+ (-l- + 3 )(EYEo)L M
2n2  2n, 8 z 2 "I Y 

-M

+ (I + _Lm . I (Y~ 2n 2  ~ ~

1 1 1 1 (A12)n2Z n n3  z

The inequality (A12) must hold for arbitrary M, for all values of the

parameters n,z and for all E°. As in [11], we consider now a sequence of

strain cycles such that n,M,E0 are fixed while the "slowing down" period

takes place faster and faster as £ becomes larger and larger. In the limit,

the sequence approaches the cycle involving the rapid path during deceleration

and, as Z-*., (A12) reduces to

., . . . _ _.
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I (EYE o ) . L AY r + L 2 L AY M+O() • 0 (A)3)n - I- 1- - n ~ - 2 - - n2

Next, consider a second sequence of strain cycles each member of which has

a similar rapid path of deceleration. For fixed values of M and E but

with progressively larger values of n, we may apply (A13) to this second

sequence of cycles. Then, after multiplying (A13) by n and taking the limit

as n we deduce the inequality (3.6).
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Captions for figures

Fig. 1 Idealized mechanical response of an elastic-viscoplastic material

at various strain rates. The curves OAB l a,,d OAB 2 represent the

material response at higher rates of strain associated with

"rate-dependent" model, while the curve OAB represents the

"rate-independent" response and may be viewed as representing

the material response when the strain rate approaches zero.

The dashed line curves PQIPQ2 '...,PQ represent unloading with

various degrees of acceleration (the slowest being PQI) from a

point P on curve OAB 2 . The instantaneous unloading from P takes

place along the rapid path PQ. Also shown are elastic unloading

from a point Q and the identification of plastic strain by OR

along the e-axis. The values of the total strain and the

plastic strain are the same for every point along the dashed

curve PQ.

Fig. 2 An idealized one-dimensional response of a "rate-dependent" model

with most of its features being similar to that depicted in

Fig. 1, but with a different characteristic for the initial

response at various rates of strain.

Fig. 3 An idealized one-dimensional response of a "rate-dependent" model

displaying an increase in the linear range of the stress-strain

response. Corresponding to different constant strain rates, the

model exhibits "dynamic yield stress" at points such as A1 and A2.

Also ehown is the curve OAQB representing the "rate-independent"

response.
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Fig. 4 One-dimensional version of a strain cycle CIQPP'QIC 6 corresponding

to the cycle of homogeneous strain defined by (3.3) and used in

the calculation of the work inequality (3.5). Also, the three

integrals in (4.8) represent the (cross-hatched) areas enclosed

by C1QPP/Q/C6.
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